Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles

2017 
The self-assembly and self-organization of small molecules on the surface of nanoparticles constitute a potential route toward the preparation of advanced proteinlike nanosystems. However, their structural characterization, critical to the design of bionanomaterials with well-defined biophysical and biochemical properties, remains highly challenging. Here, a computational model for peptide-capped gold nanoparticles (GNPs) is developed using experimentally characterized Cys-Ala-Leu-Asn-Asn (CALNN)- and Cys-Phe-Gly-Ala-Ile-Leu-Ser-Ser (CFGAILSS)-capped GNPs as a benchmark. The structure of CALNN and CFGAILSS monolayers is investigated using both structural biology techniques and molecular dynamics simulations. The calculations reproduce the experimentally observed dependence of the monolayer secondary structure on the peptide capping density and on the nanoparticle size, thus giving us confidence in the model. Furthermore, the computational results reveal a number of new features of peptide-capped monolayer...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    18
    Citations
    NaN
    KQI
    []