Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches

2009 
The presence of emergent vegetation within channelized aquatic environments has the capacity to provide a number of biological functions as well as alter the hydrology of the system. Vegetation within the channel exerts roughness, drag and friction on flowing water, reducing flow rates, increasing water depths and increasing hydraulic retention time. By increasing the hydraulic retention time, chemical residence time (CRT) is increased, thus improving the potential of pollutant mitigation. The study compared two geomorphologically similar drainage ditches, one vegetated and one non-vegetated to evaluate the effect obligate, in-stream wetland vegetation had on CRT. A fluoride (F-) tracer was amended to both ditches with nutrients and sediments to simulate stormwater runoff event. The measured CRT of the vegetated drainage ditch was at least twice that of the non-vegetated ditch. These results suggest that with the presence of vegetation increasing CRT, chemical removal rates will improve, and as a result increase the possibility of microbial transformation, adsorption, and macrophyte assimilation. By dredging or clear-scraping ditches and removing the vegetative component, farmers and managers alike will increase water flows, decrease CRT and potentially increase pollutant loads into aquatic receiving systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    56
    Citations
    NaN
    KQI
    []