Osmoregulation by trehalose synthesis in Salmonella manhattan after exposure to waste waters

1995 
A 24 h period in waste waters improved the subsequent survival of Salmonella in oligotrophic sea water, at 20 o C, compared to a direct input control. The main osmoprotective compound accumulated, investigated by 1 H-NMR spectroscopy (nuclear magnetic resonance), after 6 d in sea water was trehalose. Taking into account these observations, this paper put forward the following explanation concerning the survival mechanism: (1) stress in waste waters induces the endogenous synthesis of trehalose via the activation of the gene kat F; (2) when exposed to an osmotic stress, two degradative cytoplasmic enzymes are repressed and the bacteria accumulate trehalose which acts as an osmoprotectant. The succession of the two steps enables Salm. manhattan to immediately resist to the high salinity of oligotrophic seawater
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    14
    Citations
    NaN
    KQI
    []