Characterization of ceramic components fabricated using binder jetting additive manufacturing technology

2016 
Abstract Binder jetting additive manufacturing is an emerging technology with capability of processing a wide range of commercial materials, including metals and ceramics (316 SS, 420 SS, Inconel 625, Iron, Silica). In this project, aluminum oxide (Al 2 O 3 ) powder was used for part fabrication. Various build parameters (e.g. layer thickness, saturation, particle size) were modified and different sintering profiles were investigated to achieve nearly full-density parts (~96%). The material's microstructure and physical properties were characterized. Full XRD, compression testing, and dielectric testing were conducted on all parts. Sintered alumina parts were achieved with an average compressive strength of 131.86 MPa (16 h sintering profile) and a dielectric constant of 9.47–5.65 for a frequency range of 20 Hz to 1 MHz. The complexity offered by additive processing aluminum oxide can be extended to the manufacturing of high value energy and environmental components for environmental systems (e.g. filters and membranes) or biomedical implants with integrated reticulated structures for improved osseointegration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    113
    Citations
    NaN
    KQI
    []