Synthesis, characterization, and targeted chemotherapy of SCT200-linker-monomethyl auristatin E conjugates.

2021 
Abstract Antibody-drug conjugates (ADCs) are currently among the most successful and important strategies for treating patients with solid tumors. ADCs are composed of a monoclonal antibody and warhead, which are conjugated via a linker. Currently, monomethyl auristatin E (MMAE) is the most widely applied warhead in the development of ADCs. However, MMAE-based ADCs are generally constructed using the MC-VC-PABC linker, and this design has limited structural diversity and some disadvantages. Accordingly, in this study, we generated three types of novel linker-MMAE (with alterations in the spacer, catabolizing area, and self-immolative compared with MC-VC-PABC-MMAE) in ADCs, termed SCT200-linker-MMAE conjugates, and then evaluated the linker-drug plasma stability and the rate of drug release by cathepsin B. The binding ability, internalization rates, and efficacy of all SCT200-linker-MMAE ADCs were systematically studied, and the expression of apoptosis-associated proteins and the therapeutic efficacies of SCT200-M-2, -C-2, and -C-4 were evaluated. The results showed that the activities of some of these ADCs were increased for epidermal growth factor receptor-positive tumors. Moreover, the novel linkers designed in this study can be linked with other antibodies to treat other types of cancer. Overall, these findings provide important insights into the application of SCT200-based linkers in ADCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []