Low-cost simultaneous detection of CCR5-delta32 and HLA-B*5701 alleles in human immunodeficiency virus type 1 infected patients by selective multiplex endpoint PCR

2015 
Abstract Host genetic traits impact susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, disease progression as well as antiretroviral drug pharmacokinetics and toxicity. Remarkable examples include a 32-bp deletion in the CCR5 coreceptor molecule (CCR5-delta32) impairing attachment of monocytotropic HIV-1 to the host cell membrane and the HLA-B*5701 allele, strongly associated with a potentially fatal hypersensitivity reaction triggered by abacavir, a nucleoside inhibitor of HIV reverse transcriptase. We developed a simple selective multiplex endpoint PCR method for simultaneous analysis of both genetic traits. Two primers were designed for amplification of a region surrounding the CCR5 32-bp deletion site. One common forward primer and two reverse primers with different 3′ termini targeting the HLA-B*570101 and HLA-B*570102 alleles were designed for HLA-B*5701 analysis. A panel of 110 reference DNA samples typed in the HLA-B locus was used for development and blind validation of the assay. All the 45 HLA-B*5701 positive and the 55 HLA-B*5701 negative samples were correctly identified. The CCR5-delta32 allele was readily detected in 7 samples and did not interfere with detection of HLA-B*5701 while providing an internal amplification control. Multiplex PCR products were easily identified in agarose gels with no background noise. This simple and low-cost end-point selective multiplex PCR can conveniently screen HIV patients for the protective CCR5-delta32 allele and the risk of developing abacavir hypersensitivity reaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []