Involvement of NO–cGMP pathway in anti-hyperalgesic effect of PDE5 inhibitor tadalafil in experimental hyperalgesia

2015 
The association of elevated level of cyclic guanosine monophosphate (cGMP) with inhibition of hyperalgesia and involvement of nitric oxide (NO)-cGMP pathway in the modulation of pain perception was previously reported. Phosphodiesterases 5 (PDE5) inhibitors, sildenafil and tadalafil (TAD) used in erectile dysfunction, are known to act via the NO–cGMP pathway. TAD exerts its action by increasing the levels of intracellular cGMP. Hence, the present study investigated the effect of TAD 5, 10, or 20 mg/kg, per os (p.o.) or L-NAME 20 mg/kg, intraperitoneally (i.p.) and TAD (20 mg/kg, p.o.) in carrageenan- and diabetes-induced hyperalgesia in rats using hot plate test at 55 ± 2 °C. In carrageenan- and diabetes-induced hyperalgesia, TAD (10 and 20 mg/kg, p.o.) significantly increased paw withdrawal latencies (PWLs) as compared to the control group. L-NAME significantly decreased PWLs as compared to the normal group and aggravated the hyperalgesia. Moreover, significant difference in PWLs of L-NAME and TAD 20 was evident. Co-administration of L-NAME (20 mg/kg) with TAD (20 mg/kg) showed significant difference in PWLs as compared to the TAD (20 mg/kg), indicating L-NAME reversed and antagonized TAD-induced anti-hyperalgesia. This suggested an important role of NO–cGMP pathway in TAD-induced anti-hyperalgesic effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []