Exploiting Tweet Sentiments in Altmetrics Large-Scale Data.

2020 
This article aims to exploit social exchanges on scientific literature, specifically tweets, to analyse social media users' sentiments towards publications within a research field. First, we employ the SentiStrength tool, extended with newly created lexicon terms, to classify the sentiments of 6,482,260 tweets associated with 1,083,535 publications provided by Altmetric.com. Then, we propose harmonic means-based statistical measures to generate a specialized lexicon, using positive and negative sentiment scores and frequency metrics. Next, we adopt a novel article-level summarization approach to domain-level sentiment analysis to gauge the opinion of social media users on Twitter about the scientific literature. Last, we propose and employ an aspect-based analytical approach to mine users' expressions relating to various aspects of the article, such as tweets on its title, abstract, methodology, conclusion, or results section. We show that research communities exhibit dissimilar sentiments towards their respective fields. The analysis of the field-wise distribution of article aspects shows that in Medicine, Economics, Business & Decision Sciences, tweet aspects are focused on the results section. In contrast, Physics & Astronomy, Materials Sciences, and Computer Science these aspects are focused on the methodology section. Overall, the study helps us to understand the sentiments of online social exchanges of the scientific community on scientific literature. Specifically, such a fine-grained analysis may help research communities in improving their social media exchanges about the scientific articles to disseminate their scientific findings effectively and to further increase their societal impact.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []