Hydrothermal and plasma nitrided electrospun carbon nanofibers for amperometric sensing of hydrogen peroxide

2018 
Nitrogen-doped carbon nanofibers (CNFs) were prepared by an electrospinning method, this followed by a hydrothermal reaction or nitrogen plasma treatment to obtain electrode for non-enzymatic amperometric sensing of H2O2. The hydrothermally treated electrode performs better. Its electrochemical surface is 3.7 × 10−3 mA cm−2, which is larger than that of a nitrogen plasma treated electrode (8.9 × 10−4) or a non-doped CNF (2.45 × 10−4 mA cm−2). The hydrothermally treated CNF with rough surface and a complex profile with doped N has a higher sensitivity (357 μA∙mM−1∙cm−2), a lower detection limit (0.62 μM), and a wider linear range (0.01–0.71 mM) than N-CNFP at a working potential of −0.4 V (vs. Ag/AgCl). The electrode gave high recoveries when applied to the analysis of milk samples spiked with H2O2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    15
    Citations
    NaN
    KQI
    []