Quantifying atmospheric reactive nitrogen concentrations, dry deposition, and isotope dynamics surrounding a Marcellus Shale well pad

2019 
Abstract Unconventional natural gas (UNG) extraction activities have become important contributors to regional NOx emissions inventories. Currently, there is a knowledge gap in the amount of total N deposition surrounding well pads undergoing UNG extraction despite the fact that some areas with extensive natural gas extraction activity are already in exceedance of nitrogen critical loads. In this study, we measured the magnitude of total dry N deposition from NO2, HNO3, and NH3 attributable to the development of two UNG wells at a Marcellus Shale well pad study site. This study documents concentrations, deposition fluxes, and isotope values of NO2, HNO3, O3, and NH3 up- and down-wind along a 750-m well pad passive sampling transect across a 16-acre well pad containing two unconventional wells during all phases of development and extraction comprising fifteen distinct sampling periods. An access road transect was also utilized to explore reactive N dynamics in a near-road environment on the well pad where NO2 concentration and isotope dynamics were highly correlated with daily traffic count (r2 = 0.78–0.88, p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    2
    Citations
    NaN
    KQI
    []