Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films

2002 
Using grazing-incidence x-ray diffraction and scanning tunneling microscopy (STM), we show that the thermal decomposition of an electronic-grade wafer of 6H-SiC after annealing at increasing temperatures TA between 1080 and 1320 °C leads to the layer-by-layer growth of unconstrained, heteroepitaxial single-crystalline graphite. The limited width of the in-plane diffraction rod profiles of graphite reveals large terraces, with an average size larger than 200 A and a very small azimuthal disorientation. The overlayer is unstrained and adopts the crystalline parameter of bulk graphite even at the smallest coverage studied, which corresponds to a single graphene plane, as inferred from the flat out-of-plane diffraction profile. By increasing TA, additional graphene planes can be grown below this graphite layer from the solid-state decomposition of SiC, forming the AB stacking of Bernal graphite. A C-rich precursor is evidenced in STM by an intrinsic (6×6) reconstruction made of ordered ring or starlike struct...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    176
    Citations
    NaN
    KQI
    []