Generation of a supervised classification algorithm for time-series variable stars with an application to the LINEAR dataset
2017
Abstract With the advent of digital astronomy, new benefits and new problems have been presented to the modern day astronomer. While data can be captured in a more efficient and accurate manner using digital means, the efficiency of data retrieval has led to an overload of scientific data for processing and storage. This paper will focus on the construction and application of a supervised pattern classification algorithm for the identification of variable stars. Given the reduction of a survey of stars into a standard feature space, the problem of using prior patterns to identify new observed patterns can be reduced to time-tested classification methodologies and algorithms. Such supervised methods, so called because the user trains the algorithms prior to application using patterns with known classes or labels, provide a means to probabilistically determine the estimated class type of new observations. This paper will demonstrate the construction and application of a supervised classification algorithm on variable star data. The classifier is applied to a set of 192,744 LINEAR data points. Of the original samples, 34,451 unique stars were classified with high confidence (high level of probability of being the true class).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
12
Citations
NaN
KQI