Rosiglitazone ameliorates skeletal muscle insulin resistance by decreasing free fatty acids release from adipocytes.
2020
Abstract Skeletal muscle and white adipose tissue are important organs of glucose-lipid metabolism. However, excessive lipolysis and free fatty acids (FFA) release in adipocytes elevate plasma FFA, leading to insulin resistance in skeletal muscle. Here, we investigated effects of insulin-resistant adipocytes on skeletal muscle in vitro by simulating body environment using a transwell coculture method. Insulin-resistant 3T3-L1 adipocytes increased lipolysis and FFA release, which reduced insulin sensitivity in the cocultured C2C12 myotubes. Rosiglitazone (RSG) decreased excessive lipolysis by reducing expression of adipose triglyceride lipase (ATGL) and activity of hormone-sensitive lipase (HSL), which led to decrease of FFA release from insulin-resistant 3T3-L1 adipocytes. Meanwhile, insulin resistance in C2C12 myotubes cocultured with insulin-resistant 3T3-L1 adipocytes was ameliorated after RSG treatment. Taken together, our present study provided direct evidence to better understand insulin resistance between skeletal muscle and adipose tissue in type 2 diabetes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
4
Citations
NaN
KQI