Catalytic Mechanism of Peptidoglycan Deacetylase: A Computational Study

2017 
Bacterial peptidoglycan deacetylase enzymes are potentially important targets for the design of new drugs. In pathogenic bacteria, they modify cell-wall peptidoglycan by removing the acetyl group, which makes the bacteria more resistant to the host’s immune response and other forms of attack, such as degradation by lysozyme. In this study, we have investigated the mechanism of reaction of acetyl removal from a model substrate, the N-acetylglucosamine/N-acetylmuramic acid dimer, by peptidogylcan deacetylase from Helicobacter pylori. For this, we employed a range of computational approaches, including molecular docking, Poisson–Boltzmann electrostatic pKa calculations, molecular dynamics simulations, and hybrid quantum chemical/molecular mechanical potential calculations, in conjunction with reaction-path-finding algorithms. The active site of this enzyme is in a region of highly negative electrostatic potential and contains a zinc dication with a bound water molecule. In the docked enzyme–substrate complex...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []