Nitric oxide and liver microcirculation during autoregulation and haemorrhagic shock in rabbit model

2006 
Background Direct evidence of nitric oxide (NO) involvement in the regulation of hepatic microcirculation is not yet available under physiological conditions nor in haemorrhagic shock. Methods A laser Doppler flowmetry was used to measure liver perfusion index and a specific NO-sensitive electrode was inserted into liver parenchyma of anaesthetized rabbits. Hepatic autoregulation during moderate hypovolaemia {mean arterial pressure at 50 mm Hg without liver perfusion alteration; blood withdrawal 17.7 (4.2) ml [mean ( sd )]} or haemorrhagic shock [mean arterial pressure at 20 mm Hg associated with liver perfusion impairment and lactic acidosis; blood withdrawal 56.0 (6.8) ml] were investigated over 60 min and were followed by a rapid infusion of the shed blood. Involvement of NO synthases was evaluated using a non-specific inhibitor, NAPNA ( N ω-nitro- l -arginine P -nitro-anilide). Results In the autoregulation group, a decrease [30.0 (4.0) mm Hg] of mean arterial pressure did not alter liver perfusion index, whereas the liver NO concentration increased and reached a plateau [125 (10)%; compared with baseline; P P P P Conclusions NO plays a physiological role in the liver microcirculation during autoregulation. Its production is enzyme-dependent. Conversely, haemorrhagic shock induces a rapid increase in hepatic NO that is at least partially enzyme-independent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    17
    Citations
    NaN
    KQI
    []