BH4 domain of bcl-2 protein is required for its proangiogenic function under hypoxic condition

2013 
Beyond its classical role as apoptosis inhibitor, bcl-2 protein promotes tumor angiogenesis and the removal of N-terminal bcl-2 homology (BH4) domain abrogates bcl-2-induced hypoxia-inducible factor 1 (HIF-1)-mediated vascular endothelial growth factor (VEGF) expression in hypoxic cancer cells. Using M14 human melanoma cell line and its derivative clones stably overexpressing bcl-2 wild-type or deleted of its BH4 domain, we found that conditioned media (CM) from cells expressing BH4-deleted bcl-2 protein showed a reduced capability to increase in vitro human endothelial cells proliferation and differentiation, and in vivo neovascularization compared with CM from cells overexpressing wild-type bcl-2. Moreover, xenografts derived from cells expressing bcl-2 lacking BH4 domain showed a reduction of metastatic potential compared with tumors derived from wild-type bcl-2 transfectants injection. Stably expressing the Flag-tagged N-terminal sequence of bcl-2 protein, encompassing BH4 domain, we found that this domain is sufficient to enhance the proangiogenic HIF-1/VEGF axis under hypoxic condition. Indeed, lacking of BH4 domain abolishes the interaction between bcl-2 and HIF-1α proteins and the capability of exogenous bcl-2 protein to localize in the nucleus. Moreover, when endoplasmic reticulumtargeted bcl-2 protein is overexpressed in cells, this protein lost the capability to synergize with hypoxia to induce the proangiogenic HIF-1/VEGF axis as shown by wild-type bcl-2 protein. These results demonstrate that BH4 domain of bcl-2 is required for the ability of this protein to increase tumor angiogenesis and progression and indicate that bcl-2 nuclear localization may be required for bcl-2-mediated induction of HIF-1/VEGF axis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    20
    Citations
    NaN
    KQI
    []