Physics-Based Constraints in the Forward Modeling Analysis of Time-Correlated Image Data
2012
The forward-model approach has been shown to produce accurate model reconstructions of scientific measurements for single-time image data. Here we extend the approach to a series of images that are correlated in time using the physics-based constraints that are often available with scientific imaging. The constraints are implemented through a representational bias in the model and, owing to the smooth nature of the physics evolution in the specified model, provide an effective temporal regularization. Unlike more general temporal regularization techniques, this restricts the space of solutions to those that are physically realizable. We explore the performance of this approach on a simple radiographic imaging problem of a simulated object evolving in time. We demonstrate that the constrained simultaneous analysis of the image sequence outperforms the independent forward modeling analysis over a range of degrees of freedom in the physics constraints, including when the physics model is under-constrained. Further, this approach outperforms the independent analysis over a large range of signal-to-noise ratios.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
0
Citations
NaN
KQI