Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells

2016 
Organometal halide perovskites are highly promising materials for photovoltaic applications, yet their rapid degradation remains a significant challenge. Here, the light-induced structural degradation mechanism of methylammonium lead iodide (MAPbI3) perovskite films and devices is studied in low humidity environment using X-Ray Diffraction, Ultraviolet-Visible (UV-Vis) absorption spectroscopy, Extended X-ray Absorption Fine Structure spectroscopy, Fourier Transform Infrared spectroscopy, and device measurements. Under dry conditions, the perovskite film degrades only in the presence of both light and oxygen, which together induce the formation of halide anions through donation of electrons to the surrounding oxygen. The halide anions generate free radicals that deprotonate the methylammonium cation and form the highly volatile CH3NH2 molecules that escape and leave pure PbI2 behind. The device findings show that changes in the local structure at the TiO2 mesoporous layer occur with light, even in the abse...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    128
    Citations
    NaN
    KQI
    []