Novel flow-cytometric method for separating cell types in differentiated F9 embryoid bodies

1995 
The differentiation of F9 teratocarcinoma cells mimics the formation of a mouse embryonic tissue, the primitive endoderm. In vitro, small aggregates of F9 cells, termed embryoid bodies, differentiate in response to retinoic acid and develop a surface epithelium that is characterized by the production of α-fetoprotein. In the present study, cellular auto-fluorescence profiles obtained by fluorescence-activated cell sorting demonstrated that undifferentiated embryoid bodies were composed of a single type of cell. In contrast, retinoic acid-induced embryoid bodies were composed of two cell types: a major population displaying autofluorescence levels similar to those of cells from undifferentiated embryoid bodies and a second population displaying higher autofluorescence. RNA analyses demonstrated that the transcription of α-fetoprotein was associated only with the more highly autofluorescent population, indicating that flow cytometry provides a novel mechanism for the separation of undifferentiated cells from differentiated endoderm cells in F9 embryoid bodies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []