Post-glacial expansion dynamics, not refugial isolation, shaped the genetic structure of a migratory bird, the Yellow Warbler (Setophaga petechia)
2021
During the glacial periods of the Pleistocene, swathes of the Northern Hemisphere were covered by ice sheets, tundra and permafrost leaving large areas uninhabitable for temperate and boreal species. The glacial refugia paradigm proposes that, during glaciations, species living in the Northern Hemisphere were forced southwards, forming isolated, insular populations that persisted in disjunct regions known as refugia. According to this hypothesis, as ice sheets retreated, species recolonised the continent from these glacial refugia, and the mixing of these lineages is responsible for modern patterns of genetic diversity. However, an alternative hypothesis is that complex genetic patterns could also arise simply from heterogenous post-glacial expansion dynamics, without separate refugia. Both mitochondrial and genomic data from the North American Yellow warbler (Setophaga petechia) shows the presence of an eastern and western clade, a pattern often ascribed to the presence of two refugia. Using a climate-informed spatial genetic modelling (CISGeM) framework, we were able to reconstruct past population sizes, range expansions, and likely recolonisation dynamics of this species, generating spatially and temporally explicit demographic reconstructions. The model captures the empirical genetic structure despite including only a single, large glacial refugium. The contemporary population structure observed in the data was generated during the expansion dynamics after the glaciation and is due to unbalanced rates of northward advance to the east and west linked to the melting of the icesheets. Thus, modern population structure in this species is consistent with expansion dynamics, and refugial isolation is not required to explain it, highlighting the importance of explicitly testing drivers of geographic structure.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
0
Citations
NaN
KQI