Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet†

2008 
We have demonstrated the influence of evaporation-induced flow in a single droplet on the crystalline microstructure and film morphology of an ink-jet-printed organic semiconductor, 6,13-bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring-deposited films. However, self-aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface-tension-driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field-effect transistors fabricated with these self-aligned crystals via ink-jet printing exhibit significantly improved performance with an average effective field-effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink-jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct-write fabrication of high-performance organic electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    351
    Citations
    NaN
    KQI
    []