Construction of the Operating Limits Diagram for a Ship-Based Helicopter Using the Design of Experiments with Computational Intelligence Techniques

2020 
Compared with land-based helicopters, ship-based helicopters are required to land in a more challenging working environment as the airwakes generated by the wind field flowing through the superstructure of the ship changes the wind field structure. This complicates the wind field structure and affects the safety of flight control. The flight safety of the helicopter pilot can be significantly improved with prior understanding of the relevant information in the ship-based helicopter operating limits (SHOL) diagram. In previous studies, the SHOL diagram of ship-based helicopters has been obtained using numerical simulations in conjunction with a flight simulator. However, the flight simulator equipment is expensive and difficult to maintain. This study references the aforementioned studies by initially employing a numerical simulation method to obtain the flow field information of the interaction between the airwakes of the ship’s superstructure and the downwash flow of the helicopter. Then, the flight simulator is replaced by computational intelligence methods involving artificial intelligence. This significantly reduces the research cost for envelope construction. This study integrates design of experiments (DOE) and computational intelligence techniques (soft computing) to establish a recommended range for the SHOL diagram of ship-based helicopters. This study utilizes the DOE and computational intelligence techniques to construct the SHOL diagram of ship-based helicopters, provide suggestions, and serve as a reference for helicopter pilots and engineering designers to improve the safety during flight.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []