Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction

2019 
Abstract Efficient CO 2 electroreduction over nitrogen-doped carbon catalysts has aroused tremendous interests over the past decades. However, it still remains a great challenge to develop a carbon-based electrocatalysts with high efficiency. Herein, we develop a facile and scalable ammonia etching strategy to synthesis nitrogen-doped porous carbon from earth-abundant coal as an efficient metal-free catalyst for CO 2 electroreduction. Benefitting from the synergistic effect of well-developed porous nanostructure, abundant exposed nitrogen defects and proper ratio of pyridinic-N to pyrrolic-N, the coal-derived nitrogen-doped porous carbon enables efficient production of CO with a high Faradaic efficiency (92%) at −0.6 V versus the reversible hydrogen electrode. The simplification of the synthesis may shed a new light on the design of N-doped porous carbon electrocatalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    40
    Citations
    NaN
    KQI
    []