Modelling the spatial allocation of second-generation feedstock lignocellulosic crops in Europe

2015 
This paper presents a modelling approach for the spatial allocation of second-generation feedstock lignocellulosic crops under a reference policy scenario in European Union of 28 Member State EU-28. The land-use modelling platform LUMP was used in order to simulate the land-use changes from 2010 to 2050. Within the LUMP, the land demand for these lignocellulosic energy crops was derived from the Common Agricultural Policy Regionalised Impact analysis model. Suitability maps were generated for two main energy crop groups: herbaceous and woody lignocellulosic crops, using multicriteria analysis techniques. Biophysical factors climate, soil properties and topographical aspects, natural and artificial constraints and location-specific land categories were defined as relevant components within the platform. A sensitivity analysis determined the most influential factors to be temperature, precipitation, length of growing period and number of frost-free days. The results of the modelling exercise in the LUMP reflect the significant renewable energy contribution from energy crops in EU-28, which was estimated to be between 2.3 EJ/year in 2020 and 6.3 EJ/year in 2050, accounting for 2.3% and 9.6% of total energy consumption in the EU-28. The results of the allocation were aggregated at regional level to analyse trends. Regions with considerably high demand were identified in Germany, the United Kingdom and Poland.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    10
    Citations
    NaN
    KQI
    []