Measurements of high-frequency Atmospheric Turbulence and its Impact on the Boundary Layer of Wind Turbine Blades

2018 
To gain insight into the differences between onshore and offshore atmospheric turbulence, pressure fluctuations were measured for offshore wind under different environmental conditions. A durable piezo-electric sensor was used to sample turbulent pressure data at 50 kHz. Offshore measurements were performed at a height of 100 m on Germany’s FINO3 offshore platform in the German Bight together with additional meteorological data provided by Deutscher Wetterdienst (DWD). The statistical evaluation revealed that the stability state in the atmospheric boundary does not seem to depend on simple properties like the Reynolds number, wind speed, wind direction, or turbulence level. Therefore, we used higher statistical properties (described by so-called shape factors) to relate them to the stability state. Data was classified to be either within an unstable, neutral, or stable stratification. We found that, in case of stable stratification, the shape factor was mostly close to zero, indicating that a thermally stable environment produces closer-to Gaussian distributions. Non-Gaussian distributions were found in unstable and neutral boundary layer states, and an occurrence probability was estimated. Possible impacts on the laminar-turbulent transition on the blade are discussed with the application of so-called laminar airfoils on wind turbine blades.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []