Upside-down Type-II InAs/InAs1-xSbx Superlattice-based nBn Mid-Infrared Photodetectors with an Al083Ga017AsSb Quaternary Alloy Barrier

2020 
Ga-free InAs/InAsSb type-II superlattices (T2SLs) are emerging as candidate materials for high temperature operation of mid-infrared photodetectors, which are critical for infrared technology with an aim to provide low-cost and compact detection systems. In this work, by utilizing upside-down device structure, a closely lattice-matched Al0.83Ga0.17AsSb quaternary alloy as electron barrier was pre-grown before the growth of InAs/InAsSb T2SLs absorber in a nBn device. Based on this design, we have demonstrated 5-µm cut-off mid-wavelength infrared (MWIR) photodetectors that exhibited a dark current density of 1.55 × 10−4 A/cm2 at an operation bias 400mV at 150K. A saturated quantum efficiency at ∼4.0 µm reaches 37.5% with a 2 µm absorber and the peak responsivity reaches 1.2 A/W, which yields a peak specific detectivity as high as ∼1.82 × 1011 cm·H z1/2/W at a forward bias of 400mV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    3
    Citations
    NaN
    KQI
    []