Uniqueness of Positive Ground State Solutions of the Logarithmic Schrödinger Equation

2016 
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrodinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    19
    Citations
    NaN
    KQI
    []