Sequential PET/CT with [18F]-FDG Predicts Pathological Tumor Response to Preoperative Short Course Radiotherapy with Delayed Surgery in Patients with Locally Advanced Rectal Cancer Using Logistic Regression Analysis.

2017 
: Previous studies indicate that FDG PET/CT may predict pathological response in patients undergoing neoadjuvant chemo-radiotherapy for locally advanced rectal cancer (LARC). Aim of the current study is evaluate if pathological response can be similarly predicted in LARC patients after short course radiation therapy alone. METHODS: Thirty-three patients with cT2-3, N0-2, M0 rectal adenocarcinoma treated with hypo fractionated short course neoadjuvant RT (5x5 Gy) with delayed surgery (SCRTDS) were prospectively studied. All patients underwent 3 PET/CT studies at baseline, 10 days from RT end (early), and 53 days from RT end (delayed). Maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) of the primary tumor were measured and recorded at each PET/CT study. We use logistic regression analysis to aggregate different measures of metabolic response to predict the pathological response in the course of SCRTDS. RESULTS: We provide straightforward formulas to classify response and estimate the probability of being a major responder (TRG1-2) or a complete responder (TRG1) for each individual. The formulas are based on the level of TLG at the early PET and on the overall proportional reduction of TLG between baseline and delayed PET studies. CONCLUSIONS: This study demonstrates that in the course of SCRTDS it is possible to estimate the probabilities of pathological tumor responses on the basis of PET/CT with FDG. Our formulas make it possible to assess the risks associated to LARC borne by a patient in the course of SCRTDS. These risk assessments can be balanced against other health risks associated with further treatments and can therefore be used to make informed therapy adjustments during SCRTDS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    10
    Citations
    NaN
    KQI
    []