Coupling Effects of Decomposed Potamogeton crispus and Growing Ceratophyllum demersum on Water Quality and Plant Growth

2015 
In order to study the coupling effects of decomposed Potamogeton crispus (P. crispus) and growing Ceratophyllum demersum (C. demersum) on water quality and the effects of different decomposed biomass on plant growth, the simulating experiments for seasonal changes of submerged macrophytes were conducted. The results indicated that the nutrient concentrations in water remained at a relatively low level with different decomposed biomass and they remained stable after 29 days of the experiment. The concentrations of total dissolved nitrogen (DTN), total nitrogen (TN), total phosphorous (TP), total dissolved phosphorous (DTP), organic carbon (TOC) and chlorophyll-a (Chl-a) were lower than 0. 514, 0. 559, 0. 080, 0. 014, 13. 94 and 26. 546 mg . L-1, respectively. The obvious improving effects on water quality were observed under coupling condition of decomposition and growth, especially when the treatment of decomposed P. crispus was 20 g, and the removal efficiency of TN, DTN, TP, DTP, TOC and Chl-a reached 89. 67% , 52. 51%, 94. 99%, 55. 59% and 98. 55%, respectively. Compared with the physiology of C. demersum in the early stage, the contents of total chlorophyll, soluble protein and malondialdehyde all increased under different decomposed biomass conditions, which suggested that the nutrient released from decomposed P. crispus promoted the growth of C. demersum. The coupling effects between P. crispus decomposition and C. demersum growth showed better improving effect on water quality and growth of C. demersum with treatment of 20 g decomposed P. crispus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []