Induction and inactivation of a cytochrome P450 confering herbicide resistance in wheat seedlings

2001 
Cytochrome P450-dependent enzymes from wheat catalyze the oxidation of endogenous compounds (lauric and oleic acids) and of several herbicides (diclofop, chlortoluron, bentazon). Treatment of wheat seedlings with the safener, naphthalic anhydride and with phenobarbital increases dramatically several P450-dependent enzyme activities including diclofop and lauric acid hydroxylation. The parallel induction of lauric acid (ω-1)-hydroxylase and diclofop hydroxylase activities suggests that both compounds proceeds from the same or very similar forms of P450. To test whether either one or multiple P450 forms are involved in these oxidations, we have designed selective irreversible inhibitors of lauric acid (ω-1)-hydroxylase. Results of in vivo and in vitro experiments with acetylenic analogs of lauric acid (10- and 11-dodecynoic acids) strongly suggest that a single P450 catalyzes both laurate and diclofop hydroxylation. Treatment of wheat seedlings with these acetylenes results in a strong inhibition of the in vivo metabolism of diclofop although oxidation of chlortoluron and bentazon are not affected. Our results suggest that at least three distinct P450 forms are involved in the detoxification process of the three herbicides. Interestingly, we also demonstrate that herbicides themselves are potent inducers of the amount of total P450 and laurate/diclofop hydroxylase activies. This increased capacity of wheat to detoxify the herbicide through the induction of P450 enzymes seems to be for a large extend the mechanism which confers a tolerance on various herbicides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    19
    Citations
    NaN
    KQI
    []