Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements

2020 
This paper presents a PREcise and Fast Method of Ambiguity Reinitialization/Resolution (PREFMAR) for L1 and L2 in GPS measurements. The method determines NL1 and NL2 ambiguities based on the ambiguity functions: Ψ(NL1)NL1NL2 and Ψ(NL2)NL2NL1. These ambiguity functions have been described in detail in this work. The developed method of ambiguity initialization and reinitialization in relative positioning can use Global Positioning System (GPS) measurements from only two satellites and one measurement epoch. To resolve NL1 and NL2 ambiguities, a variance-covariance (VC) matrix of the float solution is not needed. The size of the search area in the PREFMAR method depends on code and phase accuracy as well as on the GNSS signal frequencies. Therefore, the search area is specific for every double or triple Global Navigation Satellite Systems (GNSS) data frequency. However, this part of the research only presents the ambiguity search area for L1 and L2 of GPS measurements. Additionally, a numerical example has been analyzed in detail with the use of the PREFMAR method and a float solution (NL1, NL2). Finally, the elaborated algorithms were successfully tested on real L1 and L2 GPS measurements for instantaneous ambiguity reinitialization. The PREFMAR method allows instantaneous ambiguity reinitialization if all satellites lose contact with a GNSS antenna, for short and long baselines. Therefore, the PREFMAR has a great potential for precise real-time kinematic GNSS navigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []