A Novel Interferometric Microwave Radiometer Concept Using Satellite Formation Flight for Geostationary Atmospheric Sounding

2018 
For most Earth observation applications, passive microwave radiometry from the geostationary orbit requires prohibitively large apertures for conventional single-satellite platforms. This paper proposes a novel interferometric technique capable of synthesizing these apertures using satellite formation flight. The significance of such concept is in its capacity to synthesize microwave apertures of conceptually unconstrained size in space for the first time. The technique is implemented in two formation flight configurations: a formation of a single full-sized satellite with microsatellites and a formation of several full-sized satellites. Practical advantages and challenges of these configurations are explored by applying them to geostationary atmospheric sounding at 53 GHz, the lowest sounding frequency considered for future sounder concepts Geostationary Atmospheric Sounder, GeoSTAR, and Geostationary Interferometric Microwave Sounder. The two configurations produce apertures of 14.4 and 28.8 m, respectively, and a spatial resolution of 16.7 and 8.3 km, respectively, from the geostationary orbit. The performance of these interferometers is simulated, and the challenges identified are threefold. First, intersatellite ranging in micrometer-level precision is required. Second, the extremely sparse design suggests that further innovation is necessary to improve radiometric resolution. Third, the presence of long baselines suggests extreme decorrelation effects are expected. While the first requirement has already been demonstrated on ground, the other two remain for future research. This technique can be implemented at arbitrary microwave frequencies and arbitrary circular orbits, meaning it can also be applied to other geostationary applications, or to achieve unprecedented spatial resolution from lower orbits, or to extend the accessible frequencies into lower frequency radio waves.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    9
    Citations
    NaN
    KQI
    []