Noninvasive Assessment of Arterial Stiffness Should Discriminate Between Systolic and Diastolic Pressure Ranges

2010 
Arterial stiffening plays an important role in the development of hypertension and cardiovascular diseases. The intrinsically nonlinear (ie, pressure-dependent) elastic behavior of arteries may have serious consequences for the accuracy and interpretation of arterial stiffness measurements and, ultimately, for individual patient management. We determined aortic pressure and common carotid artery diameter waveforms in 21 patients undergoing cardiac catheterization. The individual pressure-area curves were described using a dual exponential analytic model facilitating noise-free calculation of incremental pulse wave velocity. In addition, compliance coefficients were calculated separately in the diastolic and systolic pressure ranges, only using diastolic, dicrotic notch, and systolic data points, which can be determined noninvasively. Pulse wave velocity at systolic pressure exhibited a much stronger positive correlation with pulse pressure ( P P =0.012) than pulse wave velocity at diastolic pressure. Patients with an elevated systolic blood pressure (>140 mm Hg) had a 2.5-times lower compliance coefficient in the systolic pressure range than patients with systolic blood pressures P =0.002). Most importantly, some individuals, with comparable age or pulse pressure, had similar diastolic but discriminately different systolic pulse wave velocities and compliance coefficients. We conclude that noninvasive assessment of arterial stiffness could and should discriminate between systolic and diastolic pressure ranges to more precisely characterize arterial function in individual patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    56
    Citations
    NaN
    KQI
    []