High-precision and High-efficiency Micromachining of Chemically Strengthened Glass Using Ultrasonic Vibration

2014 
Abstract This paper addresses axial ultrasonic-vibration-assisted helical milling of chemically strengthened glass. Axial ultrasonic vibration was applied to a milling tool using an ultrasonic device to obtain longer tool life, higher machining accuracies, and improved cutting efficiency. The effects of ultrasonic vibration on microscale, through-hole helical milling of chemically strengthened glass were investigated and the impact of three cutting parameters (feed velocity, pitch per revolution, rotation speed) on the characteristics of surface chippings was evaluated. The results of the cutting tests clearly showed a reduction of chipping size and an improvement in tool life by using the proposed manufacturing method. Finally, optimum cutting conditions were proposed based on the results of the milling tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    9
    Citations
    NaN
    KQI
    []