Reactive Ion Etching on (Yb,Nb):RbTiOPO4/RbTiOPO4 epitaxial layers for the fabrication of Y-splitters and Mach-Zehnder Interferometers

2014 
Rubidium titanyl phosphate RbTiOPO4 (RTP) belongs to a highly diverse and versatile structural family and because of its large non-linear optical coefficients, wide transparency, high laser damage threshold, high chemical stability and low dielectric constants, this material is highly attractive for electro-optic applications such as modulators and Q-switches. RTP has a similar non-linear optical coefficient to KTP but, unlike KTP, it can be doped with Yb3+ ions to obtain a high enough concentration to allow efficient laser action. Because of all these interesting properties, RTP is a strong candidate as a platform material for integrated photonics. Reactive ion etching (RIE) is a commonly used method in etching of semiconductors, but there is little literature available on the plasma-based etching of RTP. Moreover, single-mode rib waveguides have been successfully fabricated in (Yb,Nb):RTP by RIE. In this work, (Yb,Nb):RbTiOPO4/RbTiOPO4 (001) epitaxial layers have been structured by RIE by using a combination of Ar and SF6 gases. The refractive index contrasts between the (Yb,Nb):RbTiOPO4 layer and the RbTiOPO4 substrate at 1.55 microns have been measured.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []