Potential chemoprevention of LPS-stimulated nitric oxide and prostaglandin E2 production by α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-3-indolecarbonate in BV2 microglial cells through suppression of the ROS/PI3K/Akt/NF-κB pathway

2014 
Abstract α- l -Rhamnopyranosyl-(1→6)-β- d -glucopyranosyl-3-indolecarbonate (RG3I) is a chemical constituent isolated from the commonly used Asian traditional medicinal plant, Clematis mandshurica ; however, no studies have been reported on its anti-inflammatory properties. In the present study, we found that RG3I attenuates the lipopolysaccharide (LPS)-induced DNA-binding activity of nuclear factor-κB (NF-κB) via the dephosphorylation of PI3K/Akt in BV2 microglial cells, leading to a suppression of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) production, along with that of their regulatory genes, inducible NO synthase ( iNOS ) and cyclooxygenase-2 ( Cox-2 ). Further, the PI3K/Akt inhibitor, LY294002 diminished the expression of LPS-stimulated iNOS and COX-2 genes by suppressing NF-κB activity. Moreover, RG3I significantly inhibited LPS-induced reactive oxygen species (ROS) generation similar to the ROS inhibitors, N -acetylcysteine (NAC) and glutathione (GSH). Notably, NAC and GSH abolished the LPS-induced expression of iNOS and Cox-2 in BV2 microglial cells by inhibiting NF-κB activity. Taken together, our data indicate that RG3I suppresses the production of proinflammatory mediators such as NO and PGE 2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting the PI3K/Akt- and ROS-dependent NF-κB signaling pathway, suggesting that RG3I may be a good candidate to regulate LPS-induced inflammatory response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    11
    Citations
    NaN
    KQI
    []