Controlling the adsorption kinetics via nanostructuring : Pd nanoparticles on TiO2 nanotubes

2010 
Activity and selectivity of supported catalysts critically depend on transport and adsorption properties. Combining self-organized porous oxide films with different metal deposition techniques, we have prepared novel Pd/TiO2 catalysts with a new level of structural control. It is shown that these systems make it possible to tune adsorption kinetics via their nanostructure. Self-organized TiO2 nanotubular arrays (TiNTs) prepared by electrochemical methods are used as a support, on which Pd particles are deposited. Whereas physical vapor deposition (PVD) in ultrahigh vacuum (UHV) allows us to selectively grow Pd particles at the tube orifice, Pd/TiNT systems with homogeneously distributed Pd aggregates inside the tubes are available by particle precipitation (PP) from solution. Both methods also provide control over particle size and loading. Using in-situ infrared reflection absorption spectroscopy (IRAS) and molecular beam (MB) methods, we illustrate the relation between the nanostructure of the Pd/TiNT s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    18
    Citations
    NaN
    KQI
    []