Human and rodent temporal lobe epilepsy is characterized by changes in O-GlcNAc homeostasis that can be reversed to dampen epileptiform activity

2019 
Abstract Temporal Lobe Epilepsy (TLE) is frequently associated with changes in protein composition and post-translational modifications (PTM) that exacerbate the disorder. O-linked-β- N -acetyl glucosamine (O-GlcNAc) is a PTM occurring at serine/threonine residues that is derived from and closely associated with metabolic substrates. The enzymes O-GlcNActransferase (OGT) and O-GlcNAcase (OGA) mediate the addition and removal, respectively, of the O-GlcNAc modification. The goal of this study was to characterize OGT/OGA and protein O-GlcNAcylation in the epileptic hippocampus and to determine and whether direct manipulation of these proteins and PTM's alter epileptiform activity. We observed reduced global and protein specific O-GlcNAcylation and OGT expression in the kainate rat model of TLE and in human TLE hippocampal tissue. Inhibiting OGA with Thiamet-G elevated protein O-GlcNAcylation, and decreased both seizure duration and epileptic spike events, suggesting that OGA may be a therapeutic target for seizure control. These findings suggest that loss of O-GlcNAc homeostasis in the kainate model and in human TLE can be reversed via targeting of O-GlcNAc related pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    12
    Citations
    NaN
    KQI
    []