Design of 1.33 μm and 1.55 μm Wavelengths Quantum Cascade Photodetector

2017 
In this paper, a quantum cascade photodetector based on intersubband transitions in quantum wells with ability of detecting 1.33 μm and 1.55 μm wavelengths in two individual current paths is introduced. Multi quantum wells structures based on III-Nitride materials due to their large band gaps are used. In order to calculate the photodetector parameters, wave functions and energy levels are obtained by solving 1-D Schrodinger–Poisson equation self consistently at 80 ?K. Responsivity values are about 22 mA/W and 18.75 mA/W for detecting of 1.33 μm and 1.55 μm wavelengths, respectively. Detectivity values are calculated as 1.17 × 107 (Jones) and 2.41 × 107 (Jones) at wavelengths of 1.33 μm and 1.55 μm wavelengths, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []