Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study

2020 
Redox-active esters (RAEs) as alkyl radical precursors have demonstrated great advantages for C–C bond formation. A decarboxylative cross-coupling method is described to afford substituted alkynes from various carboxylic acids using copper catalysts CuCl and Cu(acac)2. The photoexcitation of copper acetylides with electron-rich NEt3 as a ligand provides a general strategy to generate a range of alkyl radicals from RAEs of carboxylic acids, which can be readily coupled with a variety of aromatic alkynes. The scope of this cross-coupling reaction can be further expanded to aliphatic alkynes and alkynyl silanes using a catalytic amount of preformed copper-phenylacetylide. In addition, DFT calculations revealed the favorable reaction pathway and that the bidentate acetylacetonate ligand of the copper intermediate plays an important role in inhibiting the homo-coupling of the alkyne.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    11
    Citations
    NaN
    KQI
    []