A Study to Enhance the Mechanical Durability of the MAO Coating Fabricated on the 7075 Al Alloy for Wear-Related High Temperature Applications

2021 
Abstract This work has been initiated with the aim of increasing the success of micro-arc oxidation coatings fabricated on aluminium alloys against degradation under sliding contact conditions at high temperatures. For this purpose, the 7075 Al alloy has been micro-arc oxidised in an aluminate-based electrolyte with or without the adding monoclinic ZrO2 particles. Microstructural analyses revealed that the coating synthesised in a ZrO2-added electrolyte consisted of a ZrO2 particles participated Al2O3-based outer layer and a monolithic Al2O3-based inner layer, which exhibited similar features with that of the synthesised in the ZrO2-free aluminate-based electrolyte. Moreover, the coating fabricated in the ZrO2-added electrolyte exhibited enhanced wear resistance during the dry sliding wear tests conducted at room temperature and had higher durability during the tests done at 300 °C. Since the examined coatings were worn by fatigue wear mechanism, their durability during high temperature wear tests was analysed by using the conventional stress-based fatigue approach. From the derived equations, the maximum contact pressures at which coatings can endure 106 contact cycles at 300 °C were estimated as 851 and 331 MPa for the coatings fabricated in the ZrO2-added and ZrO2-free aluminate-based electrolytes, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    1
    Citations
    NaN
    KQI
    []