Long-range plasticity between intact hemispheres after contralateral cervical nerve transfer in humans.

2010 
Object Peripheral nerve injury in a limb usually causes intrahemispheric functional reorganization of the contralateral motor cortex. Recently, evidence has been emerging for significant interhemispheric cortical plasticity in humans, mostly from studies of direct cortical damage. However, in this study, a long-range interhemispheric plasticity was demonstrated in adults with brachial plexus avulsion injury (BPAI) who had received a contralateral cervical nerve transfer, and this plasticity reversed the BPAI-induced intrahemispheric cortical reorganization. Methods In this study, 8 adult male patients with BPAI were studied using PET scanning. Results The results indicated that the right somatomotor cortices, which may contribute to the control of the injured limb before brachial plexus deafferentation, still played an important role when patients with BPAI tried to move their affected limbs, despite the fact that the contralateral C-7 nerve transfer had been performed and the peripheral output had change...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    30
    Citations
    NaN
    KQI
    []