Genetic Mapping of Grain Shape Associated QTL Utilizing Recombinant Inbred Sister Lines in High Yielding Rice (Oryza sativa L.)

2021 
Grain shape is a key factor for yield and quality in rice. To investigate the genetic basis of grain shape in the high-yielding hybrid rice variety Nei2You No.6, a set of recombinant inbred sister lines (RISLs) were used to map quantitative trait loci (QTLs) determining grain length (GL), grain width (GW), and length-width ratio (LWR) in four environments. A total of 91 medium/minor-effect QTL were detected using a high-density genetic map consisting of 3203 Bin markers composed of single nucleotide polymorphisms, among which 64 QTL formed 15 clusters. Twelve of 15 clusters co-localized with QTL previously reported for grain shape/weight. Three new QTL were detected: qGL-7a, qGL-8, and qGL-11a. A QTL cluster, qLWR-12c/qGW-12, was detected across all four environments with phenotypic variation explained (PVE) ranging from 3.67% to 11.93%, which was subsequently validated in paired lines of F17 progeny and tightly linked marker assay in F10 generation. Subsequently, 17 candidate genes for qLWR-12c/qGW-12 were detected in the 431 Kb interval utilizing bulk segregant analysis (BSA). Among these, OsR498G1222170400, OsR498G1222171900, OsR498G1222185100, OsR498G1222173400, and OsR498G1222170500 were the best candidates, which lays the foundation for further cloning and will facilitate high-yield breeding in rice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []