Genistein inhibits Ang II-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells

2019 
Abstract Aims C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 are involved in the inflammation of atherosclerosis lesions. Genistein (Gen) has been demonstrated to exert beneficial effect on the cardiovascular system. However, it remains unclear whether Gen produces anti-inflammatory effect in vascular smooth muscle cells (VSMCs). Therefore, we investigated the effects of Gen on CRP and MMP-9 expressions induced by angiotensin (Ang) II in VSMCs and the related molecular mechanism. Main methods Rat VSMCs were cultured, and Ang II was used as a stimulant for CRP and MMP-9 expressions. CRP level was measured by ELISA. The mRNA and protein expressions of related indexes were identified by reverse transcription-polymerase chain reaction and western blot, respectively. Key findings Gen inhibited Ang II-stimulated CRP and MMP-9 mRNA and protein expressions in concentration- and time-dependent manners. Additionally, Gen ameliorated Ang II-induced p-ERK1/2, p-p38 and NF-κB expressions, antagonized Ang II-downregulated peroxisome proliferation-activated receptor (PPAR) γ and estrogen receptor (ER) β expressions. After treating the VSMCs with GW9662 or ICI182780 in Gen treated groups, inhibitory effect of Gen on CRP and MMP-9 expressions were antagonized in Ang II-stimulated VSMCs. The treatment of VSMCs with ICI182780 abolished downregulations of p-p38/p-ERK1/2, and antagonized upregulation of PPARγ by Gen in Ang II-stimulated VSMCs. Moreover, the inhibitory effect of Gen on Ang II-stimulated NF-κB expression was abolished after preincubation of VSMCs with GW9662 in Gen treated groups. Significance Gen exerts anti-inflammatory property via the ER-p38/ERK1/2-PPARγ-NF-κB-CRP/MMP-9 signal pathway in Ang II-stimulated VSMCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    13
    Citations
    NaN
    KQI
    []