Inhibition of Cyclic GMP‐AMP Synthase Using a Novel Antimalarial Drug Derivative in Trex1‐Deficient Mice

2018 
OBJECTIVE: Type I interferon (IFN) is strongly implicated in the pathogenesis of systemic lupus erythematosus (SLE) as well as rare monogenic interferonopathies such as Aicardi-Goutieres syndrome (AGS), a disease attributed to mutations in the DNA exonuclease TREX1. The DNA-activated type I IFN pathway cyclic GMP-AMP (cGAMP) synthase (cGAS) is linked to subsets of AGS and lupus. This study was undertaken to identify inhibitors of the DNA-cGAS interaction, and to test the lead candidate drug, X6, in a mouse model of AGS. METHODS: Trex1-/- mice were treated orally from birth with either X6 or hydroxychloroquine (HCQ) for 8 weeks. Expression of IFN-stimulated genes (ISGs) was quantified by quantitative polymerase chain reaction. Multiple reaction monitoring by ultra-performance liquid chromatography coupled with tandem mass spectrometry was used to quantify the production of cGAMP and X6 drug concentrations in the serum and heart tissue of Trex1-/- mice. RESULTS: On the basis of the efficacy-to-toxicity ratio established in vitro, drug X6 was selected as the lead candidate for treatment of Trex1-/- mice. X6 was significantly more effective than HCQ in attenuating ISG expression in mouse spleens (P < 0.01 for Isg15 and Isg20) and hearts (P < 0.05 for Isg15, Mx1, and Ifnb, and P < 0.01 for Cxcl10), and in reducing the production of cGAMP in mouse heart tissue (P < 0.05), thus demonstrating target engagement by the X6 compound. Of note, X6 was also more effective than HCQ in reducing ISG expression in vitro (P < 0.05 for IFI27 and MX1, and P < 0.01 for IFI44L and PKR) in human peripheral blood mononuclear cells from patients with SLE. CONCLUSION: This study demonstrates that X6 is superior to HCQ for the treatment of an experimental autoimmune myocarditis mediated in vivo by the cGAS/stimulator of IFN genes (cGAS/STING) pathway. The findings suggest that drug X6 could be developed as a novel treatment for AGS and/or lupus to inhibit activation of the cGAS/STING pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    38
    Citations
    NaN
    KQI
    []