基于BERT的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on BERT)
2021
“口语理解是自然语言处理的一个重要内容,意图分类和槽填充是口语理解的两个基本子任务。最近的研究表明,共同学习这两项任务可以起到相互促进的作用。本文提出了一个基于BERT的意图分类联合模型,通过一个关联网络使得两个任务建立直接联系,共享信息,以此来提升任务效果。模型引入BERT来增强词向量的语义表示,有效解决了目前联合模型由于训练数据规模较小导致的泛化能力较差的问题。实验结果表明,该模型能有效提升意图分类和槽填充的性能。”
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI