Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

2011 
Abstract In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg–1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200–500 °C: α-Mg → (α-Mg + twin dense ) → (α-Mg + twin loose ) → (α-Mg + α-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 °C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    43
    Citations
    NaN
    KQI
    []