Inside the Ionic Aggregates Constrained by CovalentlyAttached Polymer Chain Segments: Order or Disorder?

2019 
When a small-molecule ionic crystal is group-substituted with polymer chain-segments to form an ionomer, do its constrained ionic aggregates maintain ordered internal structures? This work presents, for a Na-salt sulfonated-polystyrene ionomer, reconciled TEM electron-diffraction schlieren textures and WAXS Bragg-type reflections from the ionic-aggregate nanodomains, which solidly prove the aggregates’ internal (mono)crystalline order. The observed DSC endotherm of the ionomer, identified by WAXS as an order–disorder transition interior to its aggregates, gradually becomes enhanced over a 3-month, room-temperature physical aging process, indicating that the aggregates’ ordering is a slow relaxation process in which the degree of order increases with time. This work corroborates an uncommon form of order, i.e., polymer-bound small-molecule ionic (quasi)crystal, which is supplementary to the order phenomena in small molecules, polymers, and liquid crystals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []