GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet
2022
Abstract GNSS Reflectometry (GNSS-R) is a novel remote sensing technique for the monitoring of geophysical parameters using reflected GNSS signals from the Earth's surface. Ocean wind speed monitoring is the main objective of the recently launched Cyclone GNSS (CyGNSS), a GNSS-R constellation of eight microsatellites, launched in late 2016. In this study, the capability of deep learning, especially, for an operational wind speed data derivation from the measured Delay-Doppler Maps (DDMs) is characterized. CyGNSSnet is based on convolutional layers for the feature extraction from bistatic radar cross section (BRCS) DDMs, along with fully connected layers for processing ancillary technical and higher-level input parameters. The best architecture is determined on a validation set and is evaluated over a completely blind dataset from a different time span than that of the training data to validate the generality of the model for operational usage. After a data quality control, CyGNSSnet results in an RMSE of 1.36 m/s leading to a significant improvement by 28% in comparison to the officially operational retrieval algorithm. The RMSE is the lowest among those seen in the literature for any conventional or machine learning-based algorithm. The benefits of the convolutional layers, the advantages and weaknesses of the model are discussed. CyGNSSnet offers efficient processing of GNSS-R measurements for high-quality global ocean winds.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
0
Citations
NaN
KQI