Assembly of a double-stranded RNA synthesizing complex: RNA-DEPENDENT RNA POLYMERASE 2 docks with NUCLEAR RNA POLYMERASE IV at the clamp domain

2020 
In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24 nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 co-immunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that RDR2 stably associates with Pol IVs largest catalytic subunit, NRPD1 at three sites, all within the clamp module. The clamp is a ubiquitous feature of DNA-dependent RNA polymerases that opens to allow DNA template entry and closes to encase the DNA-RNA hybrid adjacent to the RNA exit channel. The clamp also provides binding sites for polymerase-specific subunits or regulatory proteins, thus RDR2 binding to the Pol IV clamp is consistent with this theme. Within RDR2, the site of interaction with NRPD1 is very near the catalytic center. The locations of the NRPD1-RDR2 contact sites suggest a model in which transcripts emanating from Pol IVs RNA exit channel align with the template cleft of RDR2, facilitating rapid conversion of terminated Pol IV transcripts into double-stranded RNAs. Significance StatementShort interfering RNAs (siRNAs) play important roles in gene regulation by inhibiting mRNA translation into proteins or by guiding chromatin modifications that inhibit gene transcription. In plants, transcriptional gene silencing is guided by siRNAs derived from double-stranded (ds) RNAs generated by coupling the activities of DNA-dependent NUCLEAR RNA POLYMERASE IV and RNA-DEPENDENT RNA POLYMERASE 2. We show that the physical basis for Pol IV-RDR2 coupling is RDR2 binding to the clamp domain of Pol IVs largest subunit. The positions of the protein docking sites suggest that nascent Pol IV transcripts are generated in close proximity to RDR2s catalytic site, enabling rapid conversion of Pol IV transcripts into dsRNAs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []